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We study the temperature dependence of acousticlike excitations measured by means of inelastic x-ray
scattering at terahertz frequencies in silica glass. The apparent sound velocity shows, between 300 and 1600 K,
the same temperature variation measured, at lower frequencies, by Brillouin light scattering. On the contrary
the vibrations at the boson peak (BP) present a much stronger temperature dependence, as indicated by neutron
scattering data. The measured dispersion and damping are used to compute the contribution to the vibrational
density of states (VDOS) coming from the propagating acousticlike modes. This part of the VDOS accounts
only for a fraction of the BP intensity, indicating that other kinds of excitation accumulate in this frequency
range. It is consequently not surprising that the BP does not follow the temperature evolution of the Debye
frequency, which describes the modification of the continuum medium. Finally we present a comparison between
the experimentally accessible quantities and a recently proposed model for the vibrations in glasses, based on the
assumption of random spatial variations of the shear modulus [Schirmacher, Europhys. Lett. 73, 892 (2006)].
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I. INTRODUCTION

A peculiarity of glasses is the presence of an excess of
vibrational states over the prediction of the Debye model. In
the frequency range of a few terahertz the reduced density
of vibrational states, g(a))/a)z, presents a maximum, which is
usually called the boson peak (BP).! This feature is ubiquitous
in all glasses as revealed by inelastic neutron scattering or
Raman spectroscopy. Although studied for many years, the
nature of the modes associated with this peak is still a matter of
lively debate. These modes are responsible for the anomalous
low-temperature properties of glasses,” a maximumin C,/ T3,
where C, is the specific heat, and a plateau in the thermal
conductivity in the ~10 K temperature range.

The absence of periodicity that characterizes amorphous
solids makes it very difficult to determine the nature of the
vibrational modes. This is particularly true for the states
lying around the boson peak. This frequency range is also
at the lower edge of the region accessible to molecular
dynamics simulations.> A variety of theoretical models has
been proposed to explain these low-frequency (~1 THz)
vibrations. Among them we may recall the soft potential
model,* the mode-coupling theory applied to the vibrations
in glasses,” models on a lattice® or on the continuum’ with
randomly fluctuating elastic constants, and harmonic models
where the atoms vibrate around topologically disordered
configurations.®?

Experimentally the BP has been studied as a function
of macroscopic parameters such as the temperature,'®!!
the density,'>"> and the pressure'®!” or during chemical
vitrification'® or as a function of the quenching rate." It is
observed that the BP shifts to higher frequencies and decreases
in intensity when the pressure or the density is increased.
However, controversial results have been reported on the
connection between the BP modification and the change in the
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elastic medium properties. In some systems,'*!®19 it appears
that the BP variation is solely associated with the change in
the Debye frequency, which accounts for the modifications of
the elastic continuum medium. In other cases,'*!5-!7 the BP
shifts more strongly than suggested by the simple variation of
the macroscopic medium. Specifically, this second behavior is
observed when the system is subjected to an important volume
change, of the order of 10% to 20%. In the prototypical glass of
silica, the BP shows a temperature dependence much stronger
than that of the Debye frequency, computed from the Brillouin
light scattering data in the gigahertz range, as noted in Ref. 20.
However, a proper determination of the Debye frequency
requires a measurement of the sound velocity in the region of
frequency of the BP, in order to eliminate the effects of relax-
ations or anharmonicities.”’ This can only be accomplished
by using the inelastic x-ray scattering (IXS) technique, which
gives access to the Brillouin doublet in the terahertz frequency
range.

By means of IXS it has been recently observed®>~>’ that the
BP is associated with anomalies in the elastic properties of the
glass. The apparent sound velocity shows a negative dispersion
and the sound attenuation undergoes a transition from a low-
frequency region where it is proportional to the fourth power
of the frequency to a quadratic frequency dependence at high
frequencies. This behavior has been observed in three systems
with different degree of fragility: the glass of glycerol,?” silica
glass>>?* at elevated temperatures, and sorbitol glass.”> These
experimental results have been confirmed by molecular dy-
namics simulations of a Lennard-Jones glass performed on an
exceptionally large simulation box, containing 107 particles.?
The observation of these elastic anomalies requires a very
high accuracy which has been attained only in recent years,
thanks to the continuous development of the IXS technique.
The particular case of vitreous silica has been deeply studied
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by means of IXS in the past,®~* but these fine features of the
dynamics were hidden by the noise in the first experiments.
In this work we present additional IXS data of vitreous
silica, measured in the glassy state at room temperature,
discussed together with the high-temperature data presented
in a previous Letter.>> The variation of the sound velocity
with temperature is found to be comparable to that determined
by means of Brillouin light scattering (BLS).*® Using the
resulting Debye frequency we show that the temperature
dependence of the BP in silica does not follow the elastic
medium transformation, confirming the observation of Ref. 20.
A change in slope of the sound attenuation is observed also at
room temperature and it is found to be strictly related to the
BP. We then present a computation of the acoustic contribution
to the density of states based on the measured dispersion and
damping of the excitations. The result indicates that these
modes account only for a fraction, although not negligible, of
the BP. Finally we compare the experimental results with a
recently proposed model for the vibrations in glasses.”-*’

II. EXPERIMENT AND DATA ANALYSIS

The experiment was performed at the inelastic x-ray scat-
tering beamline ID16 of the European Synchrotron Radiation
Facility in Grenoble. A high-energy resolution of 1.3 meV is
achieved by means of a silicon crystal monochromator working
in backscattering configuration at the (12,12,12) reflection,
corresponding to an incident photon energy of 23.7 keV. The
monochromatic beam is focused on the sample to a spot size
of 300 (horizontal) x 100 (vertical) um? full width at half
maximum. The scattered radiation is energy analyzed by a
set of nine analyzer crystals, thus enabling the simultaneous
collection of nine spectra at different exchanged wave vectors
Q. The collection angle of the analyzers corresponds to a wave
vector uncertainty AQ ~ 0.34 nm~!. The sample used in the
experiment is a Suprasil glass cylinder of 3.5 mm in length,
chosen to match the photoabsorption length at the incident
X-ray energy.

A selection of spectra is plotted in Fig. 1 as a function of the
exchanged energy. The figure shows the comparison between
the spectra measured at high temperature, 7 = 1620 K
(presented in a recent Letter’®), and the spectra collected
at room temperature. The temperature strongly affects the
inelastic signal because of the Bose population factor. This
is reflected in an inelastic intensity at room temperature of
about 5% of the elastic one. Each spectrum is measured for a
total integration time of about 35 h.

The measured intensity is proportional to the convolution
of the instrument response function R(w) with the dynamic
structure factor S(Q,w), multiplied by a factor which accounts
for the detailed balance between the Stokes and anti-Stokes
sides:®

w/

h
I(Q,a)) = yo+ A(Q)/ %S(Q’wl)R(a) — w’)da)’.
(H

In this expression yp is a baseline accounting for the back-
ground noise, A(Q) a proportionality factor, and 8 = (kzT)~,
with kp the Boltzmann constant and 7' the temperature. In
the one-phonon approximation the inelastic contribution to
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FIG. 1. (Color online) Selection of IXS spectra of vitreous silica
at the indicated exchanged momenta Q. Each panel shows the spectra
at two temperatures: 300 K (blue squares) and 1620 K (red circles).
The best-fitting functions are plotted as continuous lines (wine at
300 K and olive at 1620 K). The dashed black line is the elastic line,
measured on a Plexiglass sample at 10 K.

the dynamic structure factor can be written in terms of the

longitudinal part G1(Q,z) of the resolvent operator of the

dynamical matrix in the wave vector representation:3%-3°

kgT Q?
LIRY lim Im G(Q,0” + i€), (2)
Tmw e—0t

Sin(Q,0) = —

where m is the average atomic mass. With great generality the
phonon propagator can be expressed in terms of a complex
self-energy 2(Q,z):

1
Gi(0,2)= . 3
(D= 6w 3)

Here the subscript j = L, T indicates the longitudinal or the
transverse component and v; o is the low-frequency limit of
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the corresponding sound velocity. Choosing for the self-energy
the expression

2(Q,w) = —Q*$v*(Q) +iwl(Q), )

the inelastic part of the dynamic structure factor reduces
to a damped harmonic oscillator (DHO) peaked at Q(Q) =

0./ vé + 8v2(Q), where 8v? is the variation of the square of the

sound velocity, and with a full width at half maximum I'(Q).
The DHO function is known to describe well the inelastic peaks
measured with IXS,?73135 at least in the low-Q range. In the
limit of small Q itis as well the solution of the hydrodynamic
equations.*

The measured spectra are fitted to the sum of a § function for
the elastic line and a DHO profile for the inelastic contribution,
convoluted with the spectrometer resolution. Examples of best-
fitting line shapes are plotted in Fig. 1 at the two temperatures.
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FIG. 2. (Color online) (a) Q dependence of the apparent lon-
gitudinal sound velocity v, at the two indicated temperatures (the
high-temperature data are taken from Ref. 23). The lines are fits to a
phenomenological function describing the negative and positive dis-
persions. (b) Ratio between the damping I" and the square of the angu-
lar frequency as a function of the exchanged momentum Q. The con-
tinuous line (black) is the best-fitted curve to the room temperature
points, while the dashed (olive) one is fitted to the high-temperature
data (T = 1620 K, from Ref. 23). The curve is Eq. (5), describing
the crossover from a I' ~ Q* law for Q < Q. to a I' ~ Q? law
for Q > Q.. The open circles (magenta) are data obtained with
a tunneling-junction technique at 7 =1 K, from Ref. 41. Inset:
The same quantity plotted as a function of frequency in log-log
scale.
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FIG. 3. (Color online) Longitudinal sound velocity as a function
of temperature. Diamonds** and triangles®® (black): BLS data, circles
(magenta): IXS data at a wave vector Q = 1.1 nm~!,

III. RESULTS AND DISCUSSION

A. Dispersion and damping

The parameters extracted from the data analysis are plotted
in Fig. 2. The upper panel of the figure shows the apparent
longitudinal sound velocity v;, = €2/Q, while the lower panel
presents the quantity I" /w?. In the low-wave-vector range the
sound velocity, at both temperatures, is affected by a negative
dispersion effect, followed by a positive dispersion at higher
Q’s. The negative dispersion has been discussed previously??
and it has been observed also in other systems.’>?

The data at room temperature indicate that v, increases
markedly with increasing temperature. This variation is com-
patible with the temperature change of v;, in the low-wave-
vector limit explored by BLS;*® see also Fig. 3. The BLS
data are shown as open points in Fig. 2. The figure shows
that the sound velocity in the terahertz range is close to but
always lower than its low-frequency limit. This observation
is in disagreement with a recent evaluation®” of the infinite-
frequency sound velocity vy, based on low-frequency BLS
data, which is used to discuss the temperature evolution of
the BP. There the authors estimate v, to be higher than the
low-frequency value.

The temperature dependence of the longitudinal sound
velocity is plotted in Fig. 3, where the BLS data are compared
to our present IXS measurements at a wave vector Q =
1.1 nm~'. The figure shows the characteristic increase of v
with temperature, which is due to the stiffening of the elastic
constants as the temperature is increased.

Concerning the damping parameter I' [see Fig. 2(b)], the
present data, confirming the result of the high temperature
study, show a behavior which is not a simple I" 0? law, as
found in the previous experiments.”’ On the contrary, the
damping undergoes a transition from I" oc Q* in the low-Q
range to I' o« Q2 at high Q’s (see Ref. 23 for a thorough
discussion on this point). This behavior, best visible in the
high-temperature data, is detectable also at room temperature.
The Q dependence of the sound attenuation coefficient I' can
be phenomenologically described by the following function:

L(Q) =aQ?[1+(Q./Q)*17'/. S
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This function follows a Q* law for wave vectors much smaller
than the crossover wave vector Q. and a Q? law in the opposite
limit. The parameter § defines the sharpness of the transition
and is fixed to § = 1.5. The best-fitting functions to the
measured I" are plotted in Fig. 2(b). The crossover wave vectors
are Q. = (1.41 +0.06) nm~! at high temperature and Q. =
(1.1£0.1) nm~! at room temperature. Taking into account
the temperature dependence of the sound velocity the transition
takes place at the crossover energies iw, = hvy O, = 6.0 meV
at high temperature and iw, = 4.2 meV at room temperature,
thus coinciding exactly to the boson peak positions at the
two temperatures (see Fig. 5). This coincidence between the
crossover point and the boson peak position, which holds as a
function of temperature, indicates a strong connection between
the excess of vibrational modes and the change in slope of the
sound attenuation.

The extrapolation to the low-Q range of the Q* slope
determined from the room temperature data is in good
agreement with a low-temperature measurement of the sound
attenuation obtained with a tunneling-junction technique.*!
In contrast the extrapolation from the high-temperature IXS
data is slightly displaced to higher Q’s because of the Q.
dependence on temperature, as can be better appreciated in
the inset of Fig. 2(b), where the damping is plotted in log-log
scale.

B. Comparison with previous IXS measurements

The IXS technique has been greatly improved in the last ten
years thanks to better-performing undulators which deliver a
higher x-ray flux, the use of low-noise detectors, and the overall
improvement in the beamline stability. The effects of these
developments on the data quality are particularly evident in
the case of vitreous silica, which was one of the first systems
to be investigated by means of IXS. The data collected at
room temperature and at high temperature (7 = 1620 K from
the experiment described in a recent Letter?®) are compared
to those obtained in previous experiments, both at high
temperature [T = 1050 K% and T = 1370 K (Refs. 30, 32
and 33)] and at room temperature®® in Fig. 4. The figure
shows both the apparent longitudinal sound velocity and the
damping parameter divided by the wave vector squared. The
quality of the new data is greatly improved compared to
the old measurements, with uncertainties even an order of
magnitude smaller. This improvement unveils the presence of
elastic anomalies, negative dispersion of the sound velocity
and change in slope of the sound attenuation around the BP
energy, which were not detectable in the old data because of
the noise.

It is worth underlining that the data in the left column of
Fig. 4 can be compared to each other, although the experiments
are performed at different temperatures. In fact, the variation
of both the sound velocity (see Fig. 3) and the BP energy in
the temperature range between 1000 and 1600 K is small with
respect to the uncertainty of the old measurements.

It is also worth noting that the present result contradicts an
earlier IXS determination®>* of the temperature dependence
of vy. In that work the authors reported a much stronger
temperature variation of v, in the IXS regime compared to
the BLS one. However, at that time the sound velocity at
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FIG. 4. (Color online) Comparison between the IXS data from
the present work (room temperature) and from a recent Letter
(T =1620 K, Ref. 23) with previous studies from the literature.
Left column: high temperature. Stars (dark yellow), T = 1050 K,
Ref. 27; open squares (wine), T = 1370 K, Refs. 30, 32 and 33;
points (red), T = 1620 K, Ref. 23. (a) Longitudinal sound velocity
at high temperature. The line (red) indicates the BLS value at
T = 1620 K. (b) Ratio between the sound attenuation and the wave
vector squared at high temperature. Right column: room temperature
data. Open circles (black), Ref. 28; full squares (blue), present work.
(c) Longitudinal sound velocity at room temperature. The line (blue)
indicates the BLS value at room temperature. (d) Ratio between the
sound attenuation and the wave vector squared at room temperature.

room temperature was determined with a relative uncertainty
of about 20%, as shown in Fig. 4(c).

C. Density of vibrational states estimate

The connection between the measured elastic anomalies,
dispersion of the sound velocity and change in slope of the
attenuation, and the excess density of states at the boson
peak can be explored in a more quantitative way. The density
of vibrational states can be obtained from the trace of the
resolvent operator,”-* which can be computed in the wave
vector base to be

2
g(w) = —ﬁ ;Im [GL(Q,0") +2G1(Q,0M)]. (6)

Here N is the number of atoms. Assuming a Debye distribution
of wave vectors, the sum can be written as an integral,

with the substitution 3 Y, — Qi% Jo7" 0*dQ, where Qp =

6mw2N/V, with V the volume, is the Debye wave vector.
Based on results of molecular dynamics simulations of
vitreous silica,*’ we have assumed that, at the same frequency,
the transverse self-energy coincides with the longitudinal
one: X7(Qr = w/vr,w) = X(QL = w/vy,w). The density
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FIG. 5. (Color online) Temperature evolution of the reduced
density of vibrational states g(w)/w* as measured with inelastic
neutron scattering (Refs. 43 and 44). The solid and dashed lines are
estimates of the acoustic contribution to the density of states, obtained
by evaluating Eq. (6) as explained in the text (continuous black,
300 K; dashed olive, 1620 K). The horizontal lines are the Debye
levels at the two temperatures (continuous black, 300 K; dashed olive,
1620 K).

of states is then estimated from the measured v; = v (Q) and
I' = I'.(Q) functions, assuming for the self-energy the form
of Eq. (4), leading to a DHO profile for the dynamic structure
factor. The Q dependences of v, and I' are fitted to appropriate
phenomenological functions (see Fig. 2).

The computed g(w)/w? is plotted in Fig. 5 and compared to
the density of states determined by neutron scattering.*>** The
calculated curves present a weak peak around 4 meV. However
the curves are not able to reproduce the intensity of the boson
peak and its shift with temperature.

We remark that the estimated density of states does not
extrapolate to the Debye limit at low frequency (horizontal
lines in the figure). The computed curves are in excellent
agreement with the neutron data in the zero-frequency limit.
This excess density comes from the strong increase of the
damping parameter I' with Q. In fact, Eq. (6) reduces to the
Debye density of states in the limit of zero sound attenuation
(I'/ 2 « 1). The sound waves in a glass are always subject to a
given amount of damping because of the structural disorder of
the system. The finite damping induces an increase of g(w)/w?
above the Debye level even at very low frequencies. Since
the curves in Fig. 5 represent the acoustic contribution to
the density of states we can state that the excess over the
Debye level is of acoustic nature, at least in its low-frequency
part. In the past other kinds of excitation were suggested to
contribute to g(w) in the low-frequency limit, such as tunneling
in two-level systems.*>4¢

The failure of the model to describe the BP intensity has
important implications for the nature of the boson peak. The
result indicates that the main part of the BP is not associated
with low-Q acousticlike modes. This conclusion, however,
does not exclude the possibility that the remaining part of
the BP excess can come from acoustic modes at the border
of the pseudo-Brillouin-zone boundary. In fact, our estimate
of Eq. (6) assumes the acousticlike modes to be propagating
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at the apparent sound velocity up to the Debye wave vector
0 p, although strongly damped. The presence of nondispersing
modes with energies around that of the boson peak has
indeed been detected by means of IXS for wave vectors
Q > 4 nm~! 3*3 Excess vibrations were identified also from
the analysis of neutron spectra in the form of librations of
corner-sharing tetrahedra.! The situation in vitreous silica
appears thus noticeably different from that in other glasses,
like glycerol?? and sorbitol,>> where a computation based on
Eq. (6) well reproduced the BP shape.

D. Comparison with the model by Schirmacher and co-workers

In this section we will present a comparison of the
experimental results with a recently proposed model for the
vibrations in disordered systems.”” The model is based on
the assumption that the disorder leads to microscopic random
spatial fluctuations of the transverse elastic constants. The
system is represented as a continuum medium with a shear
modulus fluctuating in space around a mean value Gg as
G(r) = Go[1 + AG(r)] and a constant longitudinal modulus.
The random function AG(r) is supposed to be Gaussian
distributed with a variance proportional to y. The parameter
y describes the degree of disorder of the system. The model
becomes unstable when y exceeds a critical value y,, which
depends on the ratio vy /vr.

The complex self-energy of the model can be computed
from a set of self-consistent equations. The only parameters
entering the model are y and the ratio of the longitudinal
and transverse sound velocities, vy /vy, at zero frequency.
The knowledge of the self-energy allows a comparison to the
experimentally accessible quantities, namely, the one-phonon
dynamic structure factor and the density of vibrational states.
In Fig. 6 we compare the frequency dependence of the model
to the apparent sound velocity (top panel), the damping I
(middle panel), and the excess density of states (lower panel).
All the quantities are plotted as functions of w/wp, where
wp = Qpvp is the Debye angular frequency, with vp the
Debye velocity. It is worth noting that in the investigated
temperature range the density variation of vitreous silica
is negligible*® so that Qp can be considered temperature
independent and wp depends on temperature through the sound
velocity variation.

The model predictions are plotted for three values of the
disorder parameter y, while the ratio v /vy is fixed to the
BLS value at room temperature. The model is able to reproduce
qualitatively all the features observed in the experimental data.
It shows a negative dispersion of the sound velocity at low
frequency followed by a subsequent positive dispersion. The
damping is characterized by a change in slope from a high
power of frequency at low frequencies to an almost w® law
at high frequencies. The model also presents a boson peak
feature. Most importantly, the minimum in the sound velocity,
the change in slope of the damping, and the excess in the
reduced density of states take place all at the same frequency.
As y is increased toward the critical value y,, these features
shift to lower frequency.

The figure clearly shows that the model fails in a quan-
titative description of both the damping I' and the boson
peak intensity, as pointed out in Ref. 49. The failure of the
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FIG. 6. (Color online) Apparent sound velocity, sound attenua-
tion, and reduced excess of vibrational states plotted as a function of
w/wp at the two probed temperatures. (a) shows the sound velocity
divided by its BLS value vg; 5. (b) presents the sound damping divided
by the square of the frequency in units of the Debye frequency. In
(c) the density of states is divided by the Debye density of states,
gp(w) = 30’ /w3, at the studied temperature. The curves are the
prediction of the model by Schirmacher and co-workers (Refs. 7
and 37) for the three indicated values of the disorder parameter y.
The ratio vy /vy is fixed to the room temperature BLS value and
corresponds to a critical disorder parameter . = 0.1815.

model in accounting for the measured sound attenuation can
be tentatively explained by taking into account that it is a
model on the continuum. It can be viewed as a limiting case of
a lattice model with fluctuating elastic constants. The absence
of topological disorder may induce a smaller damping of the
sound waves than in a real system. A small damping is also
reflected in a small excess density of states, as explained in
Ref. 37.

It is important to note that the model curves for all the three
plotted quantities are unchanged if v, /vy is varied according
to the temperature dependence of the sound velocity in the
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BLS regime. In other words, the model scales with the Debye
frequency wp(T) if the disorder parameter y is kept fixed. On
the contrary the experimental data show some temperature
dependence beyond the temperature change of wp. Most
noticeably the BP does not follow the transformation of the
elastic continuum medium, described by the Debye frequency.
Both its position and its intensity undergo a variation with
temperature which is stronger than the variation of wp (7). The
model parameter ¥ does not have a precise connection with
temperature. However, the comparison with the experimental
points suggests that it should increase as the temperature is
lowered, indicating that the shear modulus distribution gets
broader and broader as the system is cooled from the liquid
down to the glassy state.

IV. CONCLUSIONS

We have presented IXS data of vitreous silica at room
temperature. From the comparison with data from a previous
experiment”? we have determined the temperature dependence
of the apparent sound velocity which, in the low-wave-
vector range, follows that measured by means of BLS at
gigahertz frequencies. The room temperature points confirm
the presence of elastic anomalies at frequencies corresponding
to the excess of modes at the BP. In particular, the sound
velocity shows a negative dispersion and the sound attenuation
undergoes a transition from a dependence proportional to
Q* to one proportional to Q2. The transition takes place
at a frequency which coincides with the BP frequency and
is strongly temperature dependent. This variation is greater
than the temperature change of the Debye frequency so that
the elastic medium modification does not account for the BP
variation.

The knowledge of the wave vector dependence of the
frequency and damping of the acousticlike modes allows
for a computation of their contribution to the density of
vibrational states. The result indicates the BP maximum to
be mainly due to nondispersive excitations. These modes
can be associated with the low-frequency peak that ap-
pears in the IXS spectra at higher wave vectors.>** The
failure of a simple Debye approach to describe the tem-
perature dependence of the BP also supports the conclu-
sion that other excitations accumulate in frequency at the
BP.

A different behavior is found in the glycerol“~ and sorbito
glasses, where the elastic anomalies appear to be responsible
for the BP excess. This indicates that two mechanisms give
rise to a piling up of vibrational states at the BP. One is the
presence of a negative dispersion of the sound velocity and
the corresponding change in slope of the sound attenuation.
The other mechanism is the growing intensity of a branch of
nondispersing excitations located close to the energy of the BP.
These two mechanisms are probably not independent of one
another. In fact the first mechanism, the one associated with
the elastic anomalies, is reflected in a kink in the frequency
dependence of the self-energy. This peculiar shape of the self-
energy gives rise to a second peak in the dynamic structure
factor, just at the same energy as the kink, coinciding with the
position of the BP and of the change in slope of the sound
attenuation. This is in qualitative agreement with the model

122 125

174203-6



ELASTIC ANOMALIES AT TERAHERTZ FREQUENCIES . ..

of Schirmacher and co-workers, where a second feature in the
dynamic structure factor can be detected, in both its version
on the continuum and that on the lattice.’® This second peak
is even more evident in the version of the model with vector
vibrations, studied by Taraskin and Elliott.>!

The observed difference among the studied systems seems
thus to reside in the relative weight of the two mechanisms in
determining the BP intensity. The branch of nondispersing
excitations is particularly intense in the case of vitreous
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silica®*3 and represents an important part of the BP. In systems

like glycerol and sorbitol the contribution to the BP excess of
this feature, if present, is negligible and the softening of the
sound waves dominates the BP intensity.
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