
RESEARCH ARTICLE

Downscaling livestock census data using

multivariate predictive models: Sensitivity to

modifiable areal unit problem

Daniele Da ReID
1*, Marius Gilbert2, Celia Chaiban1,2, Pierre Bourguignon1,

Weerapong Thanapongtharm3, Timothy P. Robinson4,5, Sophie O. VanwambekeID
1

1 George Lemaitre Centre for Earth and Climate Research, Earth and Life Institute, UCLouvain, Louvain-la-

Neuve, Belgium, 2 Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium,
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Abstract

The analysis of census data aggregated by administrative units introduces a statistical bias

known as the modifiable areal unit problem (MAUP). Previous researches have mostly

assessed the effect of MAUP on upscaling models. The present study contributes to clarify

the effects of MAUP on the downscaling methodologies, highlighting how a priori choices of

scales and shapes could influence the results. We aggregated chicken and duck fine-resolu-

tion census in Thailand, using three administrative census levels in regular and irregular

shapes. We then disaggregated the data within the Gridded Livestock of the World analyti-

cal framework, sampling predictors in two different ways. A sensitivity analysis on Pearson’s

r correlation statistics and RMSE was carried out to understand how size and shapes of the

response variables affect the goodness-of-fit and downscaling performances. We showed

that scale, rather than shapes and sampling methods, affected downscaling precision, sug-

gesting that training the model using the finest administrative level available is preferable.

Moreover, datasets showing non-homogeneous distribution but instead spatial clustering

seemed less affected by MAUP, yielding higher Pearson’s r values and lower RMSE com-

pared to a more spatially homogenous dataset. Implementing aggregation sensitivity

analysis in spatial studies could help to interpret complex results and disseminate robust

products.

Introduction

Spatial data are becoming increasingly more accessible to the scientific community. However,

much data are provided in an aggregated form at different administrative levels, mainly for

operational and privacy reasons [1, 2]. Administrative levels are usually determined and modi-

fiable, meaning that they can be subdivided to form units of different sizes and shapes [3, 4].
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Because administrative units may not adequately reflect the spatial organization of human or

natural phenomena, researchers pursue the elaboration of methods for data disaggregation

with the help of broadly available remote sensing data. Often, little attention is paid to the issue

of the modifiable units and its effect on spatial representations [5]. This specific issue has been

discussed in the spatial analysis literature since the 1930s (e.g. [6]), but gained attention with

the milestone work of Openshaw and Taylor [7, 8] that led to the introduction of the concept

of Modifiable Areal Unit Problem (MAUP). The MAUP encompasses two related but distinc-

tive components: the scale issue and the zonation issue [3, 4, 7–10]. The scale problem reflects

how the description of a phenomenon is potentially affected by changing the size of the sam-

pling units, while the zonation issue relates to how changing the shape of sampling units could

influence the representation of the phenomenon [7]. These effects occur because patterns

and processes operate in the real world according to various scales and designs that are often

unknown to the researcher [9]. A descriptive example illustrates some immediate effects. Fig

1a shows how the aggregation of individual-level data at different scales causes a reduction

of the variability, and thus narrowing of the distribution. In Fig 1b, individual-level data are

aggregated at the same scale but using different, arbitrary, areal unit shapes. The results are

highly variable [3, 8, 10].

MAUP is closely related to the ecological inference fallacy, a misinterpretation of statistical

inferences drawn at the group level but interpreted at the individual level [11]. With spatial

data becoming a staple in a diversity of fields, the effects of MAUP have been widely explored,

from ecology to remote sensing and from physical geography to economy [3, 10, 12–18].

Despite the fact that the impact of MAUP is often ingnored [5], when it is addressed research-

ers mostly assess its effect on upscaling, or aggregating [3, 16, 18], and mostly on its effect on

model estimates rather than on downscaling, or disaggregating precision (but see [19]).

The availability of spatial data and data processing capacity fostered an interest into the spa-

tial heterogeneity of diverse processes and encouraged researchers to find ways to disaggregate

data. Downscaling techniques are used to disaggregate variables recorded or distributed at an

aggregated scale, such as census data, and provide predictions at a finer level of spatial detail.

Such fine scale data are of crucial interest in diverse fields and applications in agricultural

socio-economics, food security, environmental impact assessment and epidemiology [20].

Concerning livestock, analyzing the emergence of zoonotic diseases requires detailed spatially

explicit data of both hosts and their pathogens, e.g. for pathogenic avian influenza (HPAI,

[21]).

The Gridded Livestock of the World (GLW, [22]) and WorldPop [23] disaggregate popula-

tion data using statistical techniques and environmental predictors. Outputs of both projects

attain good accuracy scores [20, 24], but as they result from a downscaling process, both are

potentially subject to the MAUP. Despite the fact that the application of the GLW methodol-

ogy has become robust and its application frequent (e.g. [20, 25–28]), its vulnerability to

MAUP has not yet been directly investigated. Previous studies (e.g. [25]) showed a certain

degree of sensitivity to the scale issue, however, the severity of the problem has not been

assessed and a sensitivity analysis using various scale and shape configurations would help

quantifying potential sources of uncertainties.

In this study, we analyzed the impact of both MAUP effects on the disaggregation of cen-

sus-like livestock data. The objectives were: (i) to assess, on two different spatially-constrained

real datasets, how the MAUP affects both goodness-of-fit metrics and downscaled results, (ii)

to increase awareness about the MAUP issues in the context of data disaggregation. A fine

resolution census dataset of poultry in Thailand was aggregated at scales corresponding to

administrative levels, using sampling units with variable shapes and areas and subsequentely

disaggregated to a common resolution over a 500m grid.
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Materials and methods

Poultry population data

In 2010, the Department of Livestock Development of the Thai government conducted a

national census of poultry in each sub-district and village, counting poultry head per owner.

Each farm was associated by a unique administrative code number to its village, for which geo-

graphic coordinates were recorded. The census distinguished between broiler chickens, layer

chickens, native chickens, farm ducks and free-grazing ducks. Here, we combined all data to

species level ending with chicken and duck. The spatial constraints and determinants of the

production systems of duck and chickens differ (intensive and backyard; [29–31]). While chick-

ens can be raised anywhere, in Thailand, ducks are largely raised in wetlands used for double-

crop rice production, where free-grazing ducks feed year round in rice paddies [30, 31].

Village records with incorrect coordinates (coordinates outside of the Thai territory or with

0 in latitude or longitude fields) were removed. In the case of duplicate coordinates or dupli-

cate village unique ID, only one record for each duplicate was randomly selected. The prov-

inces of Bangkok, Nakhon Sawan, Pattani and Phetchaburi were excluded due to lack of data.

Once filtered, the village dataset was joined to the census dataset using the villages’ administra-

tive code number.

Fig 1. The modifiable areal unit problem. Example showing the two effects of MAUP (adapted from [3]).

https://doi.org/10.1371/journal.pone.0221070.g001
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The poultry census individual level data were aggregated using a simple additive aggrega-

tion method according to Thai administrative units: districts, sub-districts and villages. As a

comprehensive file of village boundaries is not available, Voronoi polygons were computed

from the village coordinates.

Modelling

We used the methodology of the Gridded Livestock of the World (GLW) project. The GLW

disaggregates livestock statistics and provides spatially detailed estimates of livestock density in

the form of raster spatial data [22]. The most recent version (GLW3; [26]) relies on stratified

random forest models and a set of environmental predictors. The GLW methodology is fully

described in [25] and [20]. Two user-controlled parameters drive the performance of random

forest models: the number of trees created and the number of variables randomly selected

when creating a splitting point. [32] have shown that 500 trees are a good rule of thumb, while

the minimum number of variables that are randomly selected was calculated using the square

root of the total number of variables [33].

The set of predictors was chosen among those shown to be relevant environmental and

socio-economical drivers of poultry distribution [20, 30, 31, 34]. It included Fourier-trans-

formed MODIS variables (two vegetation indices, the day and night land surface tempera-

ture and the band 3 middle-infra-red), eco-climatic variables (length of the growing season

and annual precipitation), topographic variables (elevation and slope) land cover classes

and anthropogenic variables (human population density and travel time to major cities and

ports). Unpopulated areas, natural areas and water bodies were masked out and only areas

suitable for poultry production were considered and used to get corrected poultry densities.

Poultry densities corrected by area were transformed to logarithm (base 10) and used as

response variable. The full list of spatial domain and predictors is detailed in Table 1 along

with sources.

All input raster layers (e.g. masks and predictor variables) and outputs (predicted densities)

were processed on the whole of Thailand with a spatial resolution of 500 m.

Table 1. List of input spatial dataset used to model chickens and ducks densities.

Type Variables Use Source

Land Land and water area Spatial domain and Spatial predictor [35, 36]

Land use IUCN world database of protected area Mask [37]

Anthropogenic Worldpop human population density Spatial predictor and suitability mask [23]

Travel time to the capital, province capitals and main harbors Spatial predictor [38, 39]

Topography Elevation (GTOPO30) Spatial predictor [40]

Slope (GTOPO30) Spatial predictor [40]

Vegetation 10 Fourier-derived variables from Normalized Difference Vegetation Index from MODIS (MODIS)� Spatial predictor [41]

Length of growing period Spatial predictor [42]

Green-up and senescence (annual cycle 1 and 2) Spatial predictor [43]

Forest cover Spatial predictor [44]

Cropland, irrigated cropland and rainfed cropland cover Spatial predictor [45]

Climatic 10 Fourier-derived variables from Day/Night Land Surface Temperature (MODIS) Spatial predictor [41]

Precipitations Spatial predictor [46]

�Annual mean, annual muinimum, annual maximum, amplitude and phase of annual cycle, amplitude and phase of bi-annual cycle, amplitude and phase of tri-annual

cycle, variance in annual, bi-annual, and tri-annual cycles.

https://doi.org/10.1371/journal.pone.0221070.t001
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Experimental design

The effect of scale was explored by aggregating the individual level data to village, sub-district

and district level. The effects of zoning were analyzed using two different sets of polygon sam-

pling units (PSUs) for each administrative level: (i) irregular (IRR) shapes, the original admin-

istrative units, and (ii) regular shapes (REG), a grid having the spatial resolution of the average

spatial resolution (ASR) of the correspondent IRR PSUs. The ASR measures the effective reso-

lution of administrative units in kilometers. It is calculated as the square root of the land area

of the administrative units considered, divided by the number of administrative units [47, 48].

District, sub-district and village ASR is respectively 557.04, 69.55 and 8.30 km. REG PSUs

were computed only at sub-district and district level. The density of birds per km2 of suitable

land was estimated in all polygons corresponding to each PSUs and transformed to its Log10

[25].

Two methods were applied to extract or sample the predictors by polygon, in order to

understand their effect on the downscaled prediction. One method randomly sampled a point

in each PSU and extracted the matching pixel value for each predictor. The other averaged the

predictors within the PSU.

Model evaluation

The polygons used as response variable were separated in training and validation sets. 70% of

polygons were used to train the model, while the remaining 30% were used as evaluation data

set. PSUs were sampled into training and evaluation datasets 20 times to assess the internal

variability of the predictions. Once the model was fitted, average and standard deviation maps

were computed from the 20 outputs.

Model evaluation was carried out using two approaches. Firstly, to assess how well the

model predicted poultry densities, the root mean square error (RMSE) and Pearson’s r correla-

tion coefficient (COR) were computed between the observed values of the evaluation set of

PSU and the predicted densities aggregated at polygon level of the corresponding validation

PSUs. RMSE measures model accuracy, i.e. how far the predicted values were, on average,

from the observed values. COR measures precision, i.e. the extent to which the observed and

predicted values are proportional to each other. Lower RMSE and higher COR indicate better

fits between predicted and observed values. RMSE and COR were estimated for the overall

models. Moreover, to measure the internal precision associated with the area, RMSE and COR

were also estimated considering PSUs area, grouping PSUs according to the frequencies of

their area (Supporting information, S1 Fig): 0-10 km2, 10-20 km2 and>20 km2 for villages, 0-

100 km2, 100-200 km2 and >200 km2 for sub-districts, 0-500 km2, 500-1000 km2 and >1000

km2 for districts.

Secondly, Pearson’s r was computed between predictions and the observed data at the vil-

lage level only to assess the capacity of models trained using various PSUs to predict poultry

population at a fine scale, i.e their “downscaling precision” (CORdown). This is crucial to

understand the effects of MAUP on the downscaled predictions considering the finest

administrative levels available as reference. Three different bounding boxes (hereafter bbox)

were selected in different areas of Thailand to visually investigate the differences between

the predictions and the observations. A graphical summary of the methodology is shown

in Fig 2. The model is fully operational under R 3.4 [49] and the codes used, as well as the

aggregated census data, are available at https://gitlab.com/danidr/glw/tree/master/glw_

maup.

Downscaling model sensitivity to modifiable areal unit problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0221070 January 27, 2020 5 / 17

https://gitlab.com/danidr/glw/tree/master/glw_maup
https://gitlab.com/danidr/glw/tree/master/glw_maup
https://doi.org/10.1371/journal.pone.0221070


Results

Data cleaning and filtering

The 62 142 village records originally available were reduced to 57 794 (Table 2). Once the fil-

tered village database was joined to the poultry census, the final georeferenced census dataset

used to train the models accounts for 53 301 records (Table 2). Fig 3 show the observed densi-

ties for the two species aggregated at sub-districts and districts administrative level. Chickens

were homogenously distributed. Ducks were mainly clustered in the central and southeast part

of the country.

Model output maps

The model predictions within bbox 1 are shown in Fig 4, while bbox 2 and 3 are displayed in

the S4 and S7 Figs. Chickens were widely distributed though high density clusters are

Fig 2. Flowchart of the analysis.

https://doi.org/10.1371/journal.pone.0221070.g002

Table 2. Data filtering results. For duplicate coordinates or duplicate village unique ID, only one record for each duplicated row was randomly selected and added to the

finale database.

Unfiltered Duplicated ID Duplicated coordinates Filtered

Villages 62142 6579 33 57794

Census 3170213 - - 53301

https://doi.org/10.1371/journal.pone.0221070.t002
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observable in the North-East and South-West parts of bbox 1. Ducks were present mostly in

the central part. The model was able to reproduce the observed spatial pattern of both species,

regardless of the sampling method.

The mean predicted values are comparable to the observed ones but the predicted values

distributions are clustered around the mean and appeared less variable than the observed. For

Fig 3. Observed poultry densities in logarithm (base 10) aggregated at districts and sub-districts level. In grey the provinces of

Bangkok, Nakhon Sawan, Pattani and Phetchaburi, excluded from the analysis due to lack of data.

https://doi.org/10.1371/journal.pone.0221070.g003
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both species, the aggregation of input data produced higher mean values at coarser scale,

together with a narrowing effect of the value distribution and a smoothing effect on the fre-

quencies (S2 and S3 Figs).

IRR and REG shaped administrative units showed slightly different predicted spatial pat-

terns. In both cases, the distribution of the predicted values is consistent with the observed

values, however, REG shapes seemed to predict a slightly smoother spatial pattern, detecting

more variability across space than IRR shapes, which predicted more values clustered around

and above the mean value.

Model evaluation

The RMSE bar plots for ducks and chickens are shown in Fig 5. For both species, the overall

accuracy increased (lower RMSE values) as the administrative level of the input data became

coarser. However, this trend is more consistent for ducks rather than for chickens. Model runs

on REG shaped PSUs showed generally less variability, but they had lower accuracy than IRR

PSUs for chickens and comparable or slightly lower for ducks. Randomly sampling the predic-

tors within the PSUs yielded slightly lower RMSEs than their aggregation.

COR bar plots based on stratified random sampling of the predictors and averaged predic-

tors are shown in Fig 6. For both species, the COR value increased as the administrative level

of the input data became coarser. REG PSUs produced higher correlations than the corre-

sponding IRR PSUs and the overall models, showing also less variability among the bootstraps.

Fig 4. Observed and predicted Log10 poultry values inside bbox1. a) chickens, b) ducks.

https://doi.org/10.1371/journal.pone.0221070.g004
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The choice of the sampling methods did not affect the results strongly, but random sampling

showed apparently higher variability between individual bootstraps.

Downscaling precision

CORdown, the Pearson’s r coefficient between the predicted and observed densities at village

level are shown in Fig 7. Models of duck distribution had higher correlations than the chicken

models. Contrary to the internal precision of the model, smaller PSUs had higher Pearson’s r
values than larger ones. The shape of the PSUs produced comparable results in terms of Pear-

son’s r values. Random sampling produced higher Pearson’s r values compared to average

sampling, which generally had a lower variability among model runs. A table summarising the

evaluation of model runs is found in S1 Table.

Discussion

Overall MAUP bias

Our model predicted poultry density patterns and value distributions similar to the observed

densities, confirming the validity of the methodology [20]. As expected, chickens were dis-

persed at high densities across the whole country, while ducks were constrained to wetlands

used for double-crop rice production [21, 30, 31].

The scale of the training data affected the output maps goodness-of-fit. On average, duck

models showed higher downscaling precision and higher accuracy and precision compared to

chickens. Swift, Liu and Uber [50] and Swift et al. [14] reported that a spatially clustered phe-

nomenon aggregated using various size and shapes of areal units is less affected by MAUP

Fig 5. Root mean square error (RMSE). RMSE computed between predicted densities and observed chickens densities a) averaged sampling b)

random sampling; RMSE computed between predicted densities and observed ducks densities c) averaged sampling d) random sampling.

https://doi.org/10.1371/journal.pone.0221070.g005
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compared to a randomly distributed phenomenon. Because of that, when the clustered struc-

ture of the observed point pattern is preserved, the MAUP bias is considerably reduced. More-

over, Swift et al. [14] also showed that aggregating the independent variable using an areal unit

shape related to its spatial structure reduces the effect of MAUP, but their conclusion rely on

simulated data only. To aggregate empirical data, choosing a priori areal unit shapes that pre-

serve the spatial structure and reduce the MAUP may be challenging, and in the context of

data disaggregation, may be impossible. But, in the context of data disaggregation, the MAUP

bias may be smaller if the spatial units are able to capture the spatial variability of the phenom-

enon at hand. Recently Tuson et al. [51] proposed a theorethical and statistical framework to

address the MAUP trying to detect a minimal geographical unit of analysis. Though promis-

ing, in our case the minimal geographical unit of analysis is determined by the minimal

administrative level available, making the results dependent on the units used.

MAUP scale effect

Qualitatively, fine resolution polygon training data produced predictions with a more detailed

spatial pattern compared to coarser resolution training data. As far as the effect of scale on the

internal precision of the model is concerned, better model precision and accuracy was reached

by models trained with coarser resolution input data, contrary to what Van Boeckel et al. [21]

found. These apparently contradictory results can be explained considering that Van Boeckel

et al. [21] used different modelling approaches and that their goodness-of-fit were computed

under a different rationale. In particular, whilst our goodness-of-fit metrics were computed

between validation PSUs and predicted pixel values aggregated at the respective PSUs areas,

Van Boeckel et al. [21] computed goodness-of-fit metrics between validation and predicted

Fig 6. Pearson’s r. Pearson’s r coefficient computed between predicted densities and observed chickens densities a) averaged sampling b) random

sampling; Pearson’s r coefficient computed between predicted densities and observed ducks densities c) averaged sampling d) random sampling.

https://doi.org/10.1371/journal.pone.0221070.g006
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value at point level. Though the RMSE and COR trends are not in accordance with this previ-

ous study on Thai poultry, our results are consistent with their findings in terms of RMSE and

COR ranges. More importantly, our results reflect the general trend described by Gehlke and

Biehl [6], where correlation coefficients tend to increase as the number of areal units repre-

senting the data decreased, as a consequence of the data smoothing associated with the aggre-

gation process.

MAUP zone effect

Comparing COR and RMSE results at the same scale, REG PSU produced slightly higher

mean values and less variability between model runs than IRR ones (S1 Table). In our case

Pearson’s r is the statistic most affected by the zone effect, but still it appeared marginal in

comparison to the effect of scale, as observed also by Swift et al. [14] for simulated data.

Recently, Garcı́a-Llamas et al. [18] investigated the effects of MAUP using landscape hetero-

geneity as a proxy of species richness. They highlighted how the use of irregularly shaped

eco-geographic area units (watersheds) performed better than arbitrary square units, proba-

bly because in their case eco-geographic areas better capture the spatial variability of species

diversity. Though our REG PSU based on the ASR of the IRR PGU showed higher precision

scores, our design remains affected by ecological fallacy, as both administrative levels and

PSU shapes may be independent of the phenomena investigated and not effectively describe

Fig 7. Downscaling precision. Pearson’s r coefficient between predicted densities and observed densities at village level: a) chickens; b) ducks. Random

sampling (rp), averaged sampling (av).

https://doi.org/10.1371/journal.pone.0221070.g007
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the environmental and social envelope of farm distribution in geographical space [11, 52].

On this point, Fox et al. [52] suggest that combining reasonable assumptions to empirical

data and spatial analysis may help to develop functional boundaries around the individual

level investigated.

Sampling methods effect

The choice of the sampling methods of the predictors did not affect RMSE and both correla-

tion coefficients. The mean value of our evaluation indices were stable and the variability

observable in Figs 5, 6 and 7 is likely to be more related to variability between model runs

rather than to the choice of the sampling methods.

Downscaling precision

The downscaling precision statistic was affected mainly by the scale rather than by the zone

or sampling methods. The ranges are generally narrow, considering scale, zone and sampling

effect. The downscaling precision as expressed by CORdown increases with higher resolution

of the training data. In fact, Robinson et al. [25] computed the goodness-of-fit metrics of their

downscaling models comparing the predicted values to the observed data at the highest admin-

istrative level (a similar approach to what we used here for the CORdown), using a real census

livestock dataset as we did. Similarly to our findings, they underlined how the statistical model

trained on smaller administrative units got better accuracy and precision in the disaggregation

of administrative units. These findings suggest that, if possible, data should be collected at the

finest spatial resolution available to train the model.

The question of how to select the spatial scale of the prediction according to the available

detail of aggregated data remains. The choice of the spatial scale of analysis influences the

understanding of the geographical patterns [53]. When downscaling, it is thus crucial to

understand whether the polygons’ area within a given administrative level could influence the

disaggregated results. For instance, considering the frequency histogram of district areas (S1

Fig), we do not know how larger polygons affect the downscaling precision. From one perspec-

tive, adding larger polygons would include more environmental heterogeneity in the model

and would allow the model to discriminate better between suitable and unsuitable areas. How-

ever, since smaller polygons suit best in terms of downscaling precision, larger polygons could

add noise to the spatial distribution of the response variable. It is unlikely that geometry of one

set of areal units would match any measured phenomena exactly as it is and as it would occur

for a simulated pattern [14], but new approaches combining geostatistics and Bayesian hierar-

chical models (e.g. [54–56]) are promising tools to address the MAUP effects.

Conclusion

Within the GLW framework, we assessed the MAUP effects on the downscaled predictions

starting from different aggregated response variable scales. We focused on the predictive rather

than the explanatory power of the model, unlike numerous studies on MAUP focused on its

effects on parameter estimates or p-values (e.g. [57–60]). The goal of the downscaling method-

ologies is not only to compare and interpret the pixel-wise absolute value per se, but also to

detect and represent well the spatial variation and pattern of the phenomena investigated.

Since absolute values and trends are different, the choice of CORdown was made under the

rationale to look for the scale that best preserves the observed value, allowing at the same time

to detect the existing spatial trends.

GLW is an efficient approach to disaggregate census data to predict spatial distribution of

livestock. Scale, rather than shapes and sampling methods, appears to affect downscaling
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precision, suggesting that the finest administrative level should be sought to train the model.

Moreover, the effects of MAUP appear weaker on a spatially constrained dataset rather than a

more spatially homogenous one, as already shown for simulated data.

Carrying a sensitivity analysis and reporting the various results obtained from different sets

of aggregation and zoning systems helped to adequately address the MAUP issue and to under-

stand how much it affected the predictions. Understanding the magnitude of the bias introduced

in the data due to the aggregation is crucial to inform spatial scientist on the often-ignored

effect of data aggregation and to provide robust spatial prediction to policy maker. The effect of

MAUP on aggregated data is unavoidable and only individual level data can avoid it [14, 61].

As already stated by previous authors(e.g. [14, 50, 62], sensitivity to aggregation should be

analysed in any spatial study in order to correctly interpret complex results and disseminate

clear and robust maps.

Supporting information

S1 Fig. Polygon sampling units areas’ histograms. The histograms of the area of polygon

sampling units used to estimate RMSE and COR for different polygon areal sizes. The red bars

represent the Average Spatial Resolution (ASR) of the polygons, while the blue lines are the

polygon area classes chosen: a) 0-500 km2, 500-1000 km2 and>1000 km2 are the districts area

classes used, ASR = 3.11 km, b) 0-100 km2, 100-200 km2 and>200 km2 are the sub-districts

area classes used, ASR = 8.33 km, c) 0-10 km2, 10-20 km2 and >20 km2 are the villages area

classes used, ASR = 23.60 km.

(TIF)

S2 Fig. Observed and predicted Log10 chicken values histogram inside bbox1. The blue

lines represent the mean value.

(TIF)

S3 Fig. Observed and predicted Log10 duck values histogram inside bbox 1. The blue lines

represent the mean value.

(TIF)

S4 Fig. Observed and predicted Log10 poultry values inside bbox 2. a) chickens, b) Ducks.

(TIF)

S5 Fig. Observed and predicted Log10 chickens values histogram inside bbox 2. The blue

lines represent the mean value.

(TIF)

S6 Fig. Observed and predicted Log10 ducks values histogram inside bbox 2. The blue lines

represent the mean value.

(TIF)

S7 Fig. Observed and predicted Log10 poultry values inside bbox 3. a) chickens, b) Ducks.

(TIF)

S8 Fig. Observed and predicted Log10 chickens values histogram inside bbox 3. The blue

lines represent the mean value.

(TIF)

S9 Fig. Observed and predicted Log10 ducks values histogram inside bbox 3. The blue lines

represent the mean value.

(TIF)
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