
1. Introduction
Natural rivers often exhibit intertwined branches along their course. Channels divide along exposed depositional 
patches (i.e., bars), islands and ridges, and reconnect further downstream generating from a topological perspec-
tive a “loop” (Figures 1a and 1b). Over the last two centuries, the pervasive channelization and flow regulation 
of natural river corridors have strongly affected the overall functioning of river systems, especially in developed 
countries. In particular, a large number of pristine braided and anastomosing rivers experienced narrowing, which 
in most cases has led to a radical change in channel pattern, from multi-thread to single-thread morphology 
(Gurnell et al., 2009). The presence of multiple channels controls transport processes (e.g., dispersion of contam-
inants and recycling of nutrients), provides socio-economic benefits for human societies (e.g., flood protec-
tion and recreational activities) and valuable environments for aquatic and riparian communities (Brown, 1997; 
Gurnell & Petts, 2002; Tockner et al., 2006).

In the recent years, the restoration of pristine river loops through channel widening and opening of side chan-
nels (e.g., Habersack & Piégay, 2008; Rohde et  al.,  2005) has become a common practice in projects aimed 
at recovering geomorphological and ecological quality of harmed river ecosystems (Dufour & Piégay,  2009; 
Wilcock, 1997; Wohl et al., 2015). Therefore, there is an increasing need of knowledge about the morphody-
namics of channel loops, including the identification of the main acting physical processes and the associated 
controlling factors. Specifically, there is a demand for specific information about the proper length scale for the 
design of these interventions and about the basic processes that could lead to a long term self-preservation with-
out requiring intensive and regular maintenance (Riquier et al., 2017; Stoffers et al., 2021).

Bifurcations and confluences are key constitutive elements of looping patterns, whose dynamics is driven by 
factors of different nature, such as hydrological regime, sediment transport, and vegetation cover, acting on a hier-
archy of spatial and temporal scales (Church, 2008). Complex natural phenomena typically manifest themselves 
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on a hierarchy of scales, often showing a fractal, scale-free geometry (Bak, 1996; Newman et al., 2006). Exist-
ence of scale-free behaviors is observed in channel networks (Dodds & Rothman, 2000; Rinaldo et al., 1998) 
and braided rivers (Ashmore, 2013; Paola & Foufoula-Georgiou, 2001; Sapozhnikov et al., 1998), leading to 
frame these systems as complex entities shaped by a multitude of nonlinear interactions among their constitutive 
elements. One could argue that channel loops may display an analogue scale-free character through the manifes-
tation of a mosaic of lengths possibly resulting from a stochastic behavior, according to which bifurcating chan-
nels follow a sort of random walk before reconnecting downstream (Heller & Paola, 1996). Alternatively, one 
could imagine that a characteristic length scale may arise as the result of distinctive morphodynamic processes.

In this perspective, from the analysis of several local avulsions (i.e., the partial/full shifting of water course 
into two channels reconnecting further downstream) occurred in the Andean and Himalayan regions, Edmonds 
et al. (2016) observed the emergence of a preferential length scale set by the channel-belt width and thus substan-
tially controlled by floodplain topography. Specifically, they found an avulsion spacing of the order of ten 
channel-belt widths. Other studies suggested that the spatial structure of river loops should reflect the nature of 
their formative mechanism, which can be grouped into two broad categories. First, it was argued that since flow 
splitting due to bars deposition is a key bifurcation-generating process, it is reasonable to relate the length-scale 
of bifurcation-confluence spacing in braided rivers to the initial wavelength of riffle-pool units, which is typi-
cally of the order of several times the main channel width (e.g., Ashmore,  2013; Bertoldi & Tubino,  2005; 
Parker,  1976). The same relation was suggested for single-thread streams when loops are generated by the 

Figure 1. The diversified manifestation of river loops. Upper panels: examples of natural river loops: (a) Bow River, Alberta (Canada), 51°12′ N 114°37′ W; (b) 
Caquetá River (Colombia), 0°45′ S 72°01′ W. From Google Earth Digital Globe, 2021. Lower panel (c): loop length (L) against bankfull discharge (Q) for gravel-bed 
(blue circles) and sand-bed rivers (orange circles). The histogram represents the frequency distribution of the lumped dataset depending on the loop length.
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deposition of mid-channel bars associated to width fluctuations (Ashworth,  1996; Hooke,  1986; Monegaglia 
et al., 2019; Repetto et al., 2002). Second, Jerolmack and Mohrig (2007) studied anabranches that were essen-
tially generated by large scale avulsions, suggesting a correspondence between distributary deltas and anastomo-
sing rivers, the latter constituted by a system of multiple channels often separated by vegetated islands (Nanson 
& Knighton, 1996). This line of thought gives support to a possible existing analogy between the spatial organ-
ization of looping patterns and river deltas. From this standpoint, several works (e.g., Chadwick et al., 2019; 
Chatanantavet et al., 2012; Jerolmack & Swenson, 2007) indicated that the distance between avulsion nodes and 
the shoreline in lowland deltas scales with the backwater length. The latter is defined as the distance over which, 
depending on flow conditions, the water surface exhibits a drawdown or a steepening (Lamb et al., 2012; Paola 
& Mohrig, 1996) set by a downstream standing body of water (e.g., lake, sea, or dam reservoirs) or a channel 
confluence (Ferguson, 2021; Meade et al., 1991; Ragno et al., 2021; Samuels, 1989).

In this work, we analyze how the length of anabranches varies among different river loops, building a dataset that 
covers a wide range of climatic and geologic environments (Section 2). We observe the existence of a clear rela-
tion between the length of connecting anabranches and the reach-averaged hydraulic geometry variables of the 
main channel, specifically bankfull width and bankfull flow depth, which is seemingly independent of the origi-
nating mechanism and of the specific hydrodynamics and sedimentological rivers properties (Section 3). A mech-
anistic justification of the emergent scaling is proposed in Section 4, where we also highlight how, differently 
from river deltas, looping patterns select a length of the anabranches that is slope-invariant. Finally, Section 5 is 
devoted to some concluding remarks.

2. Field Data
We considered 207 bifurcation-confluence units from a multitude of sand-bed and gravel-bed rivers worldwide 
(Figure S2 in Supporting Information S1), for which data on the hydrological and sedimentological variables 
(bankfull discharge Q, median grain size d50) and reach-averaged hydraulic geometry (channel slope S, bankfull 
width W, and bankfull depth D) of the main channel were available (Text S1 in Supporting Information S1). In 
order to build a homogeneous dataset, we specifically focused on topologically simple loops as those occurring 
in single-thread channels when flow splits into two anabranches that reconnect further downstream. Therefore, 
the dataset does not comprise individual loops embedded in complex networks, such as braiding or anastomosing 
rivers, whose geometry may also variously depend on the overall network organization. Moreover, river deltas 
were deliberately excluded, as the downstream water surface elevation is constrained by the presence of the sea, 
which actively affects their dynamics potentially leading to different scaling laws, as discussed below.

The resulting dataset spans a wide range of scales: water discharge ranges from 3.5 to 70,000 m 3 s −1, channel 
slope passes from 4.7% of coarse steep mountain streams to 0.002% of gentle lowland rivers, channel width varies 
between 6.4 m and 2000 m, and channel depth goes from 0.19 to 34.6 m. On the basis of the median grain size, 
which varies from 0.01 to 216 mm, the dataset was divided into two subsets: gravel-bed (here defined as having 
median grain size d50 > 2 mm) and sand-bed rivers (d50 ≤ 2 mm). This distinction is convenient as alluvial rivers 
tend to naturally separate into two main classes that are approximately representatives of different sediment trans-
port modality (e.g., Dade & Friend, 1998; Dunne & Jerolmack, 2018; Parker et al., 2002): bedload-dominated 
gravel-bed rivers and suspended-dominated sand-bed rivers. Conversely, we did not distinguish channel loops on 
the basis of their respective originating process, so that loops formed by chute cut-off of a river bend, avulsion, 
central bar deposition, and other possibles mechanisms, were all included in the dataset.

River loops were identified through satellite imagery, even including those systems where one of the two branches 
was inactive over years. The loop length (L) was calculated as the mean length of the two anabranches meas-
ured along the channels axis (Figure S3 in Supporting Information S1). To avoid including river loops simply 
formed by isolated vegetation patches or localized sediment deposits, we deliberately excluded from our analysis 
those loops that were shorter than approximately four times the bankfull width, which roughly coincides with 
the typical length scale of mid-channel bars (Ashworth, 1996; Fujita, 1989; Hundey & Ashmore, 2009; Jang & 
Shimizu, 2005).
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3. The Manifestation of a Quasi-Universal Length Scale
The analysis of the dataset described in Section 2 displays a large variability of the loop length, which encom-
passes a range of values spanning over four order of magnitudes (Figure 1c). These values are longer for large 
rivers, showing a clear increasing trend with the bankfull discharge for both the gravel- and the sand-bed subset. 
The question therefore arises whether there is a relationship between loop length and some specific reference 
quantities. We pursue this aim by introducing a set of suitable dimensionless parameters. A dimensionless formu-
lation has two main advantages: first, it allows to reduce the number of arguments to which the problem depends 
on; second, an appropriate choice of scaling variables allows to underline the physics behind the observed trend 
of length variations in natural river loops (Barenblatt, 1996).

In general, following the lead of studies dealing with alluvial hydraulic geometry (e.g., Métivier et al., 2017; 
Parker et al., 2007; Phillips et al., 2022), a first-order analysis can be performed by scaling the loop length L with 
the median grain size of bed material d50. The variation of the dimensionless length 𝐴𝐴 𝐴𝐴∗ = 𝐴𝐴∕𝑑𝑑50 is then described 
in terms of a dimensionless bankfull discharge 𝐴𝐴 𝐴𝐴∗ = 𝐴𝐴∕

√

𝑔𝑔 𝑔𝑔
5
50

 , with g the gravity acceleration. Results show 
how gravel- and sand-bed rivers subset separate into two distinct clusters, encompassing values of L* that spans 
over eight orders of magnitude (Figure 2a). Despite the presence of a certain degree of scatter, L* follows a clear 
power-law trend with Q*, with a substantial collapse of data on the regression line 𝐴𝐴 𝐴𝐴∗ ∝ 𝑄𝑄

0.434
∗  . The scaling 

relation existent between L* and 𝐴𝐴 𝐴𝐴∗ is indicative of a more profound property of loop length when compared 
against flow discharge, namely its self-similarity, that is, an invariance with respect to Q* or, in other words, the 
constancy of the ratio between L and a suitable scaling length.

Figure 2. Dependence of the dimensionless loop lengths 𝐴𝐴
(

𝐿𝐿∗, �̃�𝐿𝐵𝐵, �̃�𝐿𝑊𝑊 , �̃�𝐿𝐷𝐷

)

 on the dimensionless discharge Q*. The following scaling lengths are employed: (a) median 
grain size (d50); (b) backwater length (B); (c) bankfull width (W) and (d) bankfull flow depth (D) of the main channel. Blue and orange circles indicate gravel- and 
sand-bed rivers, respectively. The green line indicates the least squares regression on the lumped dataset, with R 2 denoting the associated coefficient of determination.
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The natural next question follows: what is the proper scaling length that leads to self-similarity? To answer this 
question, we consider two alternative approaches. First, following the suggested idea of an existent analogy 
between branching patterns in fluvial environments and river deltas (Jerolmack & Mohrig, 2007), we consider 
the backwater length

𝐵𝐵 =
𝐷𝐷

𝑆𝑆

(

1 − 𝐹𝐹𝐹𝐹
2
)

, 𝐹𝐹 𝐹𝐹 =
𝑄𝑄

𝑊𝑊

√

𝑔𝑔𝐷𝐷3
, (1)

as scaling quantity 𝐴𝐴
(

�̃�𝐿𝐵𝐵 = 𝐿𝐿∕𝐵𝐵
)

 , with 𝐴𝐴 𝐴𝐴𝐴𝐴 the Froude number. Second, we consider the possible relation between 
loop length and reach-averaged hydraulic geometry of the main channel, namely the bankfull width W and bank-
full flow depth D. As a consequence, we introduce the two scaling lengths 𝐴𝐴 �̃�𝐿𝑊𝑊 = 𝐿𝐿∕𝑊𝑊  and 𝐴𝐴 �̃�𝐿𝐷𝐷 = 𝐿𝐿∕𝐷𝐷 .

Figure 2b shows that 𝐴𝐴 �̃�𝐿𝐵𝐵 again follows a power-law trend with Q*. A systematic decrease of 𝐴𝐴 �̃�𝐿𝐵𝐵 over five orders of 
magnitude is observed, which suggests that the backwater length is not the proper scaling length that we are look-
ing for. Differently, a nearly constant value of the dimensionless loop length when scaled with reach-averaged 
hydraulic geometry quantities, is shown across the entire spectrum of Q* (Figures 2c and 2d). Regression for 𝐴𝐴 �̃�𝐿𝑊𝑊  
and 𝐴𝐴 �̃�𝐿𝐷𝐷 applied to each subset does not reveal any substantial difference between gravel- and sand-bed rivers. In 
this case, the functional relation among dimensionless parameters can be considered as nearly constant as it is 
essentially independent of 𝐴𝐴 𝐴𝐴∗ . This configures a “complete similarity” (Barenblatt, 1996), in which an appropri-
ate combination of the governing parameters allows for eliminating the dependence on some dimensionless group 
(i.e., Q*). Comparatively, the above-presented scaled quantities L* and 𝐴𝐴 �̃�𝐿𝐵𝐵 lead to an “incomplete similarity,” in 
the sense that such scalings are not sufficient to rule out the dependence from Q*.

Yet, it is worth noting that parameters D and W can be both considered as “quasi-universal” length scales, since 
these quantities allow to explain most of the variability observed among a wide range of conditions, despite the 
discernible deviation from this universality (hence the prefix “quasi”) arising from several factors that are not 
considered in the analysis. For example, geometry and hydraulic characteristics of the bifurcates, the density and 
type of riparian vegetation (if present), possible geological constraints (e.g., the degree of confinement of the 
floodplain), or the properties of bank material, are likely to influence the proposed relations.

4. Discussion
The analysis of our dataset shows the existence of quasi-universal relations for the loop length in rivers, regardless 
of the specific originating process leading to establishment of the intertwining structure and independently of 
external factors such as physiographic, hydrological and sedimentological conditions of the single rivers. Specif-
ically, our analysis shows the existence of a complete similarity of the scaled lengths 𝐴𝐴 �̃�𝐿𝑊𝑊  and 𝐴𝐴 �̃�𝐿𝐷𝐷 , which suggests 
that the spacing of river loops directly scales with bankfull hydraulic geometry variables of the main channel.

A possible mechanistic justification to the above scaling relations is provided by the outcomes of the recent 
theoretical work by Ragno et al. (2021), who introduced a mathematical model for studying the coupled evolu-
tion of bifurcations and confluences in an idealized river loop.  Their derivation is founded on the idea of a 
morphodynamic interaction between the two constitutive elements of the loop. Most river bifurcations tend to 
unevenly distribute water and sediment fluxes toward the downstream anabranches (e.g., Bolla Pittaluga, Coco, & 
Kleinhans, 2015; Redolfi et al., 2019); the downstream confluence is not passively subject to the incoming fluxes 
because stream collision produce variations of the free surface elevation (Figure S1 in Supporting Information 
S1). These variations at the confluence node can exert an upstream influence, providing a feedback that tends 
to stabilize the bifurcation. Therefore, river loops are found to be essentially governed by a two-way morpho-
dynamic interaction between bifurcation and confluence nodes, which mutually exchange information along the 
connecting anabranches depending on their length. Specifically, the intensity of this effect turns out to depend on 
the length L through the “interaction parameter” Λ, defined as:

Λ∶=
(

𝐿𝐿

𝐷𝐷 𝐷𝐷2

)−1

, (2)

where c is the dimensionless Chézy coefficient (i.e., the ratio between the mean flow velocity and the friction 
velocity). Equation 2 shows explicitly the direct link between Λ and the previously defined scaled length 𝐴𝐴 �̃�𝐿𝐷𝐷 



Geophysical Research Letters

RAGNO ET AL.

10.1029/2022GL099928

6 of 9

derived from field data. Since values of the Chézy coefficient are relatively constant in both gravel- and sand-bed 
rivers, with c ∼ 10 (Parker et al., 2007; Wilkerson & Parker, 2011), Equation 2 implies that 𝐴𝐴 Λ ∝ 1∕�̃�𝐿𝐷𝐷 . Field data 
shown in Figure 2d yields values of the interaction parameter of the order of 10 −1 to 10 0 (Figure S4a in Support-
ing Information S1), which turns out to coincide with the range of Λ values needed to produce a significant inter-
action between the bifurcation and the confluence as suggested by the theory of Ragno et al. (2021).

A second important outcome emerging both from field data and theory is the almost slope-independence of 𝐴𝐴 �̃�𝐿𝐷𝐷 
(Figure 3), which allows us to definitely reject the hypothesis that loop spacing is somehow controlled by the 
backwater length. Specifically, the theory shows that the interaction parameter Λ, and consequently 𝐴𝐴 �̃�𝐿𝐷𝐷 (Equa-
tion 2), is almost independent of channel slope as the result of a compensation between the Froude-dependent 
hydrodynamic effect generated by stream collision at the confluence and consequent slope-dependent backwater 
effect exerted on the upstream bifurcation (see Text S2 in Supporting Information S1).

A direct consequence of the slope-invariant behavior of looping patterns is the independence of scaled length 𝐴𝐴 �̃�𝐿𝐷𝐷 
from the Froude number, which derives from the fact that S and Fr are directly related by the uniform flow relation 
Fr 2 = S c 2. This can be noticed in Figure S4b in Supporting Information S1, the latter showing the weak depend-
ence of the scaled length with the Froude number. In purely two-dimensional contexts, the Froude number has a 
prominent role unless all spatial variations are much longer than the backwater length (Paola, 2000). For example, 
the importance of Froude number can be observed in contexts like the study of equilibrium state achieved during 
auto-retreat due to base-level rise (Wu et al., 2020), bed waves propagation (Lanzoni et al., 2006), river-tides inter-
action (Bolla Pittaluga, Tambroni, et al., 2015; Ragno et al., 2020), classical theory of open-channel flows in a 
fixed-bed formulation (Chanson, 2004), and in the design of distorted physical models (Paola et al., 2009; Peakall 
et al., 1996). However, the weak effect of the Froude number has been also observed in various three-dimensional 
morphodynamic processes, including the formation of river bars and the planform evolution of meandering chan-
nels (Redolfi et al., 2021; Seminara, 2006; Wilkinson et al., 2008).

A further result highlighted in Figure 3 is the clear difference between the spatial scaling of river looping patterns 
and deltaic systems. In lowland river-dominated deltas (i.e., deltas in which the magnitude of marine processes 
like waves and tides is minimal) the avulsion length L (A), defined as the distance upstream of the shoreline where 
avulsions preferentially occur (e.g., Chadwick et al., 2019), is known to be mainly controlled by the characteristic 
length of the backwater profiles (e.g., Chatanantavet et al., 2012; Jerolmack & Swenson, 2007). The reanalysis 

Figure 3. The different scaling of fluvial looping patterns and deltaic systems. Observed loop length in rivers (green circles) 
and avulsion length in river-dominated deltas (gray squares), scaled with the bankfull depth 𝐴𝐴

(

�̃�𝐿𝐷𝐷, �̃�𝐿
(𝐴𝐴)

𝐷𝐷

)

 and plotted against the 
channel slope (S). Solid lines indicates the best-fitting power-laws for the two datasets, the dashed line represents the scaled 
backwater length B/D, obtained from Equation 1. Dark and light squares denote field and experimental data (Text S1 in 
Supporting Information S1), respectively.
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of avulsion data we retrieved from the literature (Text S1 in Supporting Information S1), shows that scaling the 
length L (A) with the bankfull depth leads indeed to a clear difference with respect to river loops, with values 
of 𝐴𝐴 �̃�𝐿

(𝐴𝐴) = 𝐿𝐿
(𝐴𝐴)∕𝐷𝐷 markedly decreasing with channel slope. This dependence essentially follows the backwater 

length.

From a physical point of view, the difference between river loops and deltaic systems can be explained by consid-
ering that the suggested mechanism of compensation does not hold in cases when the downstream effect is 
“externally imposed” by variations of the sea level, or due to variations of the flow discharge. Ultimately, the 
difference between the two kinds of scaling relations can be attributed to the fact that the backwater length repre-
sents the scale at which gravitational and frictional forces become comparable, while the length c 2D represents 
the relation between inertial and frictional forces (e.g., Canestrelli et al., 2014). As a consequence, the scaling 
quantity c 2D also plays an important role in determining the spacing of bar-pools units and meander bends 
(Camporeale et al., 2005; Ikeda et al., 1981; Mosselman et al., 2006; Parker & Johannesson, 1989; Struiksma 
et  al.,  1985), which in turn reflects in the confluence-bifurcation spacing in braided rivers (Ashmore,  2013; 
Hundey & Ashmore, 2009).

Finally, in this study we did not consider braided rivers, due to the difficulty to obtain reliable data for individual 
channel loops within the complex network of channels. However, the suggested scaling may generally hold for any 
multi-thread systems, including braided and anastomosing rivers. Ordinary regression of data in Figure 1c yields 
to the power-law L = 65 Q 0.48, showing a striking analogy with comparable results obtained by Ashmore (2001) 
from the analysis of the so-called “braid wavelength” (or link-length) in a series of field braided reaches, in which 
the mean downstream spacing of confluences is found to be equal to L (C) = 52 Q 0.45, a trend further confirmed in 
a series of successive laboratory investigations (Bertoldi et al., 2009; Hundey & Ashmore, 2009).

5. Conclusions
The consistency between observed and theoretically predicted values of 𝐴𝐴 �̃�𝐿𝐷𝐷 suggests that river loops may organize 
themselves by selecting a spatial scale that is not randomly distributed, but it is basically controlled by a morpho-
dynamic two-way interaction between the bifurcation and confluence nodes. The stabilizing effect induced by 
this interaction may allow river loops to survive in the long term, escaping from the abandonment or complete 
filling of one of the two anabranches. In this sense, the observed quasi-universality might not result from an adap-
tation of the individual loops toward optimal conditions, but rather from a sort of Darwinian process according 
to which the loop population is regulated by a natural selection of the more stable individuals. Therefore, results 
of this work provide a key information for the design of effective and self-sustaining river restoration and river 
engineering interventions aimed at creating and re-activating pristine channel loops, and gives further insights 
into the study of the spatial organization of braided and anastomosing rivers.

Data Availability Statement
We made the entire dataset publicly available at https://doi.org/10.5281/zenodo.6901398.
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